Conference Topic:
Select two decimal numbers between -60 and +60. Convert the numbers into 8 bit unsigned numbers with negative numbers in the 2's complement form. (Remember that positive numbers have the leftmost bit =0 and negative numbers have the leftmost bit =1).
Add the two numbers together to generate an eight-bit binary result. Show your work.
Response:
Theresa L. Ford on 03-19-2004
Calculate 5010 + -4910. 1. Convert Decimals to Binary 1.A. 5010 = ?2 5010 = 010 + 010 + 3210 + 1610 + 010 + 010 + 210 + 010 0 0 1 1 0 0 1 0 5010 = 001100102 OR: 5010 / 210 = 2510 R 010 2510 / 210 = 1210 R 110 1210 / 210 = 610 R 010 610 / 210 = 310 R 010 310 / 210 = 110 R 110 110 / 210 = 010 R 110 Read from end to beginning ( 110010 ). Pad left with zeros to 8 bits. ( 00110010 ). 5010 = 001100102 1.B. -4910 = ?2 in 2's compliment form -4910 = -12810 + 6410 + 010 + 010 + 810 + 410 + 210 + 110 1 1 0 0 1 1 1 1 -4910 = 110011112 OR: (Invert and Add 1) 4910 = 010 + 010 + 3210 + 1610 + 010 + 010 + 010 + 110 0 0 1 1 0 0 0 1 4910 = 001100012 Invert = 110011102 Add 1 = 110011112 -4910 = 110011112 2. Add Binary 5010 = 001100102 -4910 = 110011112 001100102 + 110011112 12 1, no carry 1 001100102 + 110011112 012 0, carry 1 11 001100102 + 110011112 0012 0, carry 1 111 001100102 + 110011112 00012 0, carry 1 1111 001100102 + 110011112 000012 0, carry 1 11111 001100102 + 110011112 0000012 0, carry 1 111111 001100102 + 110011112 00000012 0, carry 1 111111 001100102 + 110011112 000000012 0, overflow 1 000000012 = 110 010 + 010 + 010 + 010 + 010 + 010 + 010 + 110 = 110 3. Summary 5010 001100102 + -4910 +110011112 110 000000012